Subtracting fractions with different denominators does seem difficult, especially when working with big numbers. However, once you get to know the steps and tips, such calculations are not as complex as they seem. Below we will provide you with a four-step approach and several tips that help you solve fraction subtractions easily.

**Subtracting Fractions in Four Steps**

The four-step approach is a traditional method that is applicable to all cases, regardless of the fraction types you’ll be dealing with.

Before proceeding to the first step, it’s necessary to understand the structure of a fraction. A fraction has two parts which are the numerator and denominator separated by a dividing line. In a subtraction or an addition with fractions, we need to ensure that the denominators of two or more fractions in the calculations are the same before actually calculating.

Below are details of the four steps that will help you with fraction calculations. For you to get a better understanding of our four-step approach, we will work out the same example throughout the four steps.

**Step 1: Figure Out the Least Common Denominator**

The least common denominator is the lowest common multiple of two or more denominators in the fraction subtraction you’re working on.

To find the least common denominator, we find the smallest number that is divisible by both of the denominators. In this case, the least common denominator is

17 x 6 = 106.

**Step 2: Figure Out the Equivalent Fractions **

After finding the smallest common denominator, you need to figure out what the new fractions are when both of the fractions now have the new denominators.

Working the same example from step 1, we have the new denominator of both of the fractions is 106.

For the fraction of 13/6 to change its denominator into 106 while keeping the same value, we multiply both the numerator and denominator with 6.

**Step 3: Do the Subtraction**

Now with the new fractions, we just need to do the subtraction of the numerators for the result.